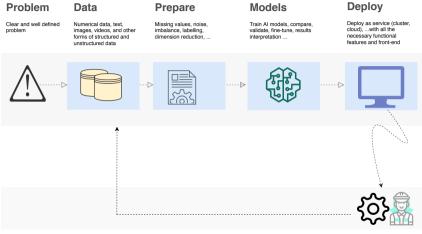
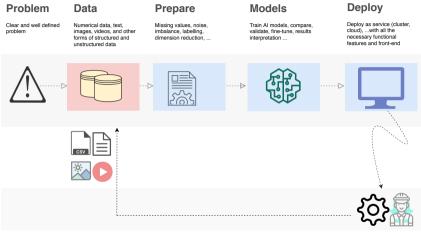


# Computer Vision: Challenges and Opportunities

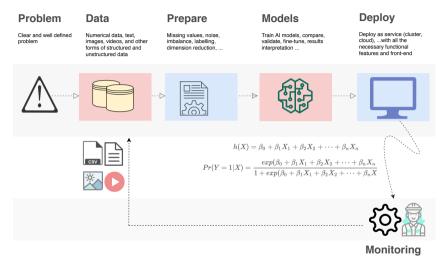
Professor Eyad Elyan

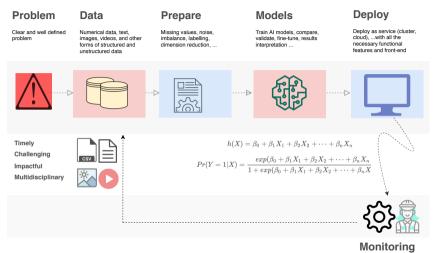

Lead of the Interactive Machine Vision Research Group School of Computing Robert Gordon University Aberdeen, United Kingdom

May 4, 2022


### Overview

- Background
   Computer Vision
   Image Representation
- **2** Breakthrough in CV
- 3 Common CV Tasks Basic Tasks Advanced Tasks
- Real World Projects


   Engineering Diagrams
   Online User's Authentication
   Remote Inspection
   Mechanical Engineering Diagrams
- **5** Challenges
- 6 Conclusion




#### Monitoring



#### Monitoring





monitor, evaluate and re-

 Predict heart failures in people with cardiovascular disease given a set of input features (e.g. age, sex, type of chest pain, etc...)

|    | 821  | 165 | chestPain 1 | bloodpressuraliset | Mercarecholast | faitinghfugar | restingECG | heartRateMax | esercise | oldPeak | alope | Wessels | that | lab |
|----|------|-----|-------------|--------------------|----------------|---------------|------------|--------------|----------|---------|-------|---------|------|-----|
| ١  | 47   | 0   |             |                    | 584            |               |            | 100          | 0        | 1.6     | 2     |         | 7    | 1   |
| 2  | 57   | 1   | 2           | 124                | 261            |               | 0          | 141          | 0        | 0.3     | 1     | 0       | 7    | 2   |
| 3  | 64   | 1   | - 4         | 128                | 263            |               | 0          | 105          | 1        | 0.2     | 2     | 1       | 7    | 1   |
| 4  | - 74 | 0   | 2           | 120                | 269            |               | 2          | 121          | 1        | 0.2     | 1     | 1       | 3    | 1   |
| 5  | 65   | 1   | 4           | 120                | 177            |               | 0          | 1.40         | 0        | 0.4     | 1     | 0       | 7    | 1   |
| 6  | 54   | 1   | 3           | 110                | 256            | 1             | 2          | 142          | 1        | 0.6     | 2     | 1       | 6    | 2   |
| 7  | 59   | 1   | 4           | 110                | 239            |               | 2          | 142          | 1        | 1.2     | 2     | 1       | 7    | 2   |
| 8  | 60   | 1   | 4           | 140                | 293            |               | 2          | 179          | 0        | 1.2     | 2     | 2       | 7    | 2   |
| 9  | 63   | 0   | - 4         | 110                | 407            |               | 2          | 154          | 0        | 4.0     | 2     | 3       | 7    | 2   |
| 0  | 59   | 1   | 4           | 135                | 234            |               | 0          | 161          | 0        | 0.5     | 2     | 0       | 7    | 1   |
| ١  | - 53 | 1   | - 4         | 142                | 226            |               | 2          |              | 1        | 0.0     | 1     | 0       | 7    | 1   |
| 2  | - 44 | 1   | 3           | 140                | 235            |               | 2          | 1.80         | 0        | 0.0     | 1     | 0       | 3    | 1   |
| 3  | - 61 | 1   | 1           | 134                | 234            |               | 0          | 145          | 0        | 2.6     | 2     | 2       | 3    | 2   |
| 4  | 57   | 0   | 4           | 128                | 303            |               | 2          | 159          | 0        | 0.0     | 1     | 1       | 3    | 1   |
| 15 | 71   | 0   | 4           | 112                | 149            |               | 0          | 125          | 0        | 1.6     | 2     | 0       | 3    | 1   |
| 6  | - 45 | 1   | - 4         | 140                | 311            |               | 0          | 120          | 1        | 1.8     | 2     | 2       | 7    | 2   |
| 7  | 53   | 1   | - 4         | 140                | 203            |               | 2          | 155          | 1        | 3.1     | 3     | 0       | 7    | 2   |
| 8  | 64   | 1   | 1           | 110                | 211            |               | 2          | 144          | 1        | 1,8     | 2     | 0       | 3    | 1   |
| 9  | 40   | 1   | 1           | 140                | 199            |               | 0          | 178          | 1        | 1.4     | 1     | 0       | 7    | 1   |
| 10 | 67   | 1   | - 4         | 120                | 229            |               | 2          | 129          | 1        | 2.6     | 2     | 2       | 7    | 2   |
| 11 | - 48 | 1   | 2           | 110                | 245            |               | 2          | 1.80         | 0        | 0.2     | 2     | 0       | 3    | 1   |
| 2  | 41   | - 1 | - 4         | 115                | 303            |               | 0          | 141          | 0        | 1.2     | 2     | 0       | 3    | 1   |
| 13 | 47   | - 1 | - 4         | 112                | 204            |               | 0          | 143          | 0        | 0.1     | 1     | 0       | 3    | 1   |
| 4  | 54   | 0   | 2           | 132                | 288            |               | 2          | 159          | 1        | 0.0     | 1     | 1       | 3    | 1   |
| 5  | 48   | 0   | 3           | 130                | 275            |               | 0          | 133          | 0        | 0.2     | 1     | 0       | 3    | 1   |
|    |      |     |             |                    |                |               |            |              |          |         |       |         |      |     |

 Predict heart failures in people with cardiovascular disease given a set of input features (e.g. age, sex, type of chest pain, etc...)

|    |      |   | heatPain 1 | bloodpressuralitest |      | annihisodis . | CentingECG | heartRateMax | esercise | oldPeak | alope | Wessels | that | 14 |
|----|------|---|------------|---------------------|------|---------------|------------|--------------|----------|---------|-------|---------|------|----|
|    | 47   | 0 | 3          |                     | 584  | •             | 2          | 163          |          | 1.6     | 2     | 0       |      | 1  |
| t  | 57   | 1 | 2          | 124                 | 261  |               | 0          | 141          | 0        | 0.3     | 1     | 0       | 7    | 2  |
| 3  | 64   |   | - 4        | 128                 | 263  |               | 0          | 105          |          |         |       |         |      | ŀ  |
|    | - 74 | 0 | 2          | 120                 | 269  |               | 2          | 121          | 1        | 0.2     | 1     | 1       | 3    |    |
|    | 65   | 1 | 4          | 120                 | 177  |               | 0          | 1.43         |          | 0.4     | 1     |         |      |    |
| 5  | 54   | 1 | 3          | 110                 | 256  | 1             | 2          | 142          | 1        | 0.6     | 2     | 1       | 6    | 2  |
| 7  | 59   | 1 | - 4        | 110                 | 239  |               | 2          | 142          | 1        | 1.2     | 2     | 1       | 7    | 2  |
| 5  | 60   | 1 | - 4        | 140                 | 293  |               | 2          | 170          | 0        | 1.2     | 2     | 2       | 7    | 2  |
| 9  | 63   | 0 | - 4        | 110                 | 407  |               | 2          | 154          | 0        | 4.0     | 2     | 3       | 7    | 2  |
| 0  | 59   | 1 | - 4        | 135                 | 234  |               | 0          | 161          | 0        | 0.5     | 2     | 0       | 7    | 1  |
| 1  | 53   | 1 | . 4        | 142                 | 226  |               | 2          | 111          | 1        | 0.0     | 1     | 0       | 7    |    |
| 2  | 44   | 1 | 3          | 140                 | 235  |               | 2          | 1.80         | 0        | 0.0     | 1     | 0       | 3    |    |
| 3  | 41   | 1 | 1          | 134                 | 234  |               | 0          | 145          | 0        | 2.6     | 2     | 2       | 3    | 2  |
| 4  | 57   | 0 | - 4        | 128                 | 303  |               | 2          | 159          | 0        | 0.0     | 1     | 1       | 3    | 1  |
| 5  | 71   | 0 | - 4        | 112                 | 149  |               | 0          | 125          | 0        | 1.6     | 2     | 0       | 3    | 1  |
| 6  | 45   |   |            | 140                 | 311  |               | 0          |              |          | 1.8     | 2     | 2       |      | 1  |
| 7  | 53   | 1 |            | 140                 | 203  | 1             | 2          | 155          | 1        | 3.1     | 3     | 0       | 7    | 2  |
| 8  | 64   | 1 | 1          | 110                 | 211  | •             | 2          | 144          | 1        | 1.8     | 2     | 0       | 3    |    |
| 9  | 40   | 1 | 1          | 140                 | 199  |               | 0          | 178          | 1        | 1.4     | 1     | 0       | 7    |    |
| 10 | 67   | 1 | - 4        | 120                 | 229  |               | 2          | 129          | 1        | 2.6     | 2     | 2       | 7    | 2  |
| 11 | 48   | 1 | 2          | 110                 | 245  |               | 2          | 1.80         | 0        | 0.2     | 2     | 0       | 3    | 1  |
| 2  | 41   | 1 | - 4        | 115                 | 303  |               | 0          | 141          | 0        | 1.2     | 2     | 0       | 3    | 1  |
| 3  | 47   | 1 | - 4        | 112                 | 204  |               | 0          | 143          | 0        | 0.1     | 1     | 0       | 3    | 1  |
| 4  | 54   | 0 | 2          | 132                 | 288  | 1             | 2          | 159          | 1        | 0.0     | 1     | 1       | 3    | 1  |
| 5  | 48   | 0 | 3          | 130                 | 275  | •             | 0          | 139          | 0        | 0.2     | 1     | 0       | 3    | •  |
|    | **   |   |            | 110                 | 3.43 |               |            | 145          |          | 6.0     |       |         |      |    |

 Predict heart failures in people with cardiovascular disease given a set of input features (e.g. age, sex, type of chest pain, etc...)

|    |      |   | bestPain b | feedpressuraftest |     |   | minglee | heartRateMax | esercise | oldPeak | alopa | Wessels | that | P  |
|----|------|---|------------|-------------------|-----|---|---------|--------------|----------|---------|-------|---------|------|----|
|    | 47   | 0 | 3          | 115               | 584 | • | 2       | 163          | 0        |         | 2     | 0       |      | Ľ  |
|    | 57   | 1 | 2          | 124               | 261 |   |         |              | 0        |         | 1     | 0       |      |    |
| 1  | - 64 |   | - 4        | 128               | 263 |   | 0       | 105          |          | 0.2     |       |         |      | 1  |
| 6  | - 74 | 0 | 2          | 120               | 269 |   | 2       | 151          | 1        | 0.2     | 1     | 1       | 3    |    |
| 1  | 65   | 1 | 4          | 120               | 177 |   | 0       |              | 0        | 0.4     | 1     | 0       |      |    |
| 5  | 54   | 1 | 3          | 110               | 256 | 1 | 2       | 142          | 1        | 0.6     | 2     | 1       | 6    |    |
| r  | 59   | 1 | 4          | 110               | 239 |   | 2       | 142          | 1        | 1.2     | 2     | 1       | 7    |    |
| 8  | 60   | 1 | 4          | 140               | 293 |   | 2       | 170          | 0        | 1.2     | 2     | 2       | 7    |    |
| 9  | 63   | 0 | 4          | 110               | 407 |   | 2       | 154          | 0        | 4.0     | 2     | 3       | 7    |    |
| 0  | 59   | 1 | - 4        | 135               | 234 |   | 0       | 161          | 0        | 0.5     | 2     | 0       | 7    |    |
| 1  | 53   | 1 | 4          | 142               | 226 |   | 2       | 111          | 1        | 0.0     | 1     | 0       | 7    |    |
| 2  | 44   | 1 | 3          | 140               | 235 |   | 2       | 1.80         | 0        | 0.0     | 1     | 0       | 3    | 1  |
| 3  | 41   | 1 | 1          | 134               | 234 |   | 0       | 145          | 0        | 2.6     | 2     | 2       | 3    | 1  |
| 4  | 57   | 0 | - 4        | 128               | 303 |   | 2       | 159          | 0        | 0.0     | 1     | 1       | 3    |    |
| 5  | 71   | 0 | - 4        | 112               | 149 |   | 0       | 125          | 0        | 1.6     | 2     | 0       |      | 1  |
| 6  | 41   |   | - 4        | 140               | 311 |   |         |              |          | 1.8     | 2     | 2       |      | ]  |
| 7  | 53   | 1 | 4          | 140               | 203 | 1 | 2       | 155          | 1        | 3.1     | 3     | 0       | 7    |    |
| 8  | 64   | 1 | 1          | 110               | 211 | • | 2       | 144          | 1        | 1.8     | 2     | 0       | 3    |    |
| 19 | 40   | 1 | 1          | 140               | 199 |   | 0       | 178          | 1        | 1.4     | 1     | 0       | 7    |    |
| 10 | 67   | 1 | 4          | 120               | 229 |   | 2       | 129          | 1        | 2.6     | 2     | 2       | 7    | 1  |
| n  | 48   | 1 | 2          | 110               | 245 |   | 2       | 1.80         | 0        | 0.2     | 2     | 0       | 3    |    |
| 2  | 41   | 1 | - 4        | 115               | 303 |   | 0       | 141          | 0        | 1.2     | 2     | 0       | 3    | C. |
| 3  | 47   | 1 | 4          | 112               | 204 |   |         | 143          | 0        | 0.1     | 1     | 0       | 3    | i. |
| 4  | 54   | 0 | 2          | 132               | 288 | 1 | 2       | 159          | 1        | 0.0     | 1     | 1       | 3    | i. |
| 5  | 48   | 0 | 3          | 130               | 275 | • | 0       | 139          | 0        | 0.2     | 1     | 0       |      |    |
|    |      |   |            | 110               | 343 |   |         | 1.63         |          | 6.0     |       |         |      |    |

 Predict heart failures in people with cardiovascular disease given a set of input features (e.g. age, sex, type of chest pain, etc...)

|    |      | 144 | chestPain - |     | Meanscholat | fastinghSugar | restingECG | heartRateMax | esercise | oldPeak | alopa | Wessels | that | 1al |
|----|------|-----|-------------|-----|-------------|---------------|------------|--------------|----------|---------|-------|---------|------|-----|
| 1  | 47   | 0   | ,           |     | 584         | •             | 2          | 163          | 0        |         | 2     | 0       |      | 1   |
| 2  | 57   | 1   | 2           | 124 | 261         |               | 0          | 141          | 0        | 0.3     | 1     | 0       | 7    | 2   |
| 3  | - 64 |     |             | 128 | 263         |               |            |              |          |         |       |         |      | 1   |
| 4  | - 74 | 0   | 2           | 120 | 269         |               | 2          | 151          | 1        | 0.2     | 1     | 1       | 3    | ŀ.  |
| 5  | 65   | 1   | - 4         | 120 | 177         |               | 0          |              | 0        | 0.4     | 1     | 0       | 7    | Þ.  |
| 6  | 54   | 1   | 3           | 110 | 256         |               | 2          |              | 1        | 0.6     | 2     | 1       | 6    | 2   |
| 7  | 59   | 1   | - 4         | 110 | 239         |               | 2          | 142          | 1        | 1.2     | 2     | 1       | 7    | 2   |
| 8  | 60   | 1   | - 4         | 140 | 293         |               | 2          | 170          | 0        | 1.2     | 2     | 2       | 7    | 2   |
| 9  | 63   | 0   | - 4         | 110 | 407         |               | 2          | 154          | 0        | 4.0     | 2     | 3       | 7    | 2   |
| 10 | 59   | 1   | - 4         | 135 | 234         |               | 0          | 161          | 0        | 0.5     | 2     | 0       | 7    | ŀ.  |
| 11 | 53   | 1   |             | 142 | 226         |               | 2          | 101          | 1        | 0.0     | 1     | 0       | 7    | Þ.  |
| 12 | .44  | 1   | 3           | 140 | 235         |               | 2          |              | 0        | 0.0     | 1     | 0       | 3    | Þ   |
| 13 | 41   | 1   | 1           | 134 | 234         |               | 0          | 145          | 0        | 2.6     | 2     | 2       | 3    | 2   |
| 14 | 57   | 0   | - 4         | 128 | 303         |               | 2          | 159          | 0        | 0.0     | 1     | 1       | 3    | Þ.  |
| 15 | 71   | 0   | - 4         | 112 | 149         |               | 0          | 125          | 0        | 1.6     | 2     | 0       | 3    | Þ   |
| 6  | 41   | 1   |             | 140 | 311         |               | 0          | 120          | 1        | 1.8     | 2     | 2       |      | z   |
| 7  | 53   | 1   |             | 140 | 203         | 1             | 2          | 155          | 1        | 3.1     | 3     | 0       | 7    | z   |
| 18 | 64   | 1   | 1           | 110 | 211         |               | 2          | 144          | 1        | 1.8     | 2     | 0       | 3    | h.  |
| 19 | 40   | 1   | 1           | 140 | 199         |               | 0          | 178          | 1        | 1,4     | 1     | 0       | 7    | þ.  |
| 20 | 67   | 1   | 4           | 120 | 229         |               | 2          | 129          | 1        | 2.6     | 2     | 2       | 7    | 2   |
| 21 | 48   | 1   | 2           | 110 | 245         |               | 2          | 1.80         | 0        | 0.2     | 2     | 0       | 3    | Þ.  |
| 2  | 41   | 1   | - 4         | 115 | 303         |               | 0          | 141          | 0        | 1.2     | 2     | 0       | 3    | þ.  |
| 13 | 47   | 1   | - 4         | 112 | 204         |               | 0          | 143          | 0        | 0.1     | 1     | 0       | 3    | þ.  |
| 4  | 54   | 0   | 2           | 132 | 288         | 1             | 2          | 159          | 1        | 0.0     | 1     | 1       | 3    | þ.  |
| 15 | 48   | 0   | 3           | 130 | 275         |               | 0          |              | 0        | 0.2     | 1     | 0       | 3    | þ.  |
|    |      |     |             | 110 | 3.43        |               |            |              |          |         |       |         |      |     |

$$X = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & \vdots & \dots & x_{mp} \end{bmatrix}, Y = \begin{bmatrix} y_1 \\ \vdots \\ \vdots \\ y_m \end{bmatrix}$$

• **Classification**: If *Y* is a set of discrete values

# Unstructured Data

Computer Vision and ML: Giving the computer the ability to process, analyse and **synthesise** visual content without explicitly programming it:

- 2D Images
- Videos
- 3D Images
- Multi-modal data (2D &3D, etc..)
- Motivation: achieve faster, more accurate, safer practises, ...



• MNIST: Can computers recognise handwritten digits?

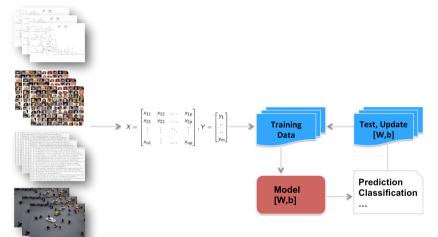
537004101

#### • MNIST: Can computers recognise handwritten digits?

537004101

| 1  | "0 | 0 | 0 | 0 | 0 | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0           | 0   | 0    | 0    | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0 | 0 |  |
|----|----|---|---|---|---|----|------|------|------|------|------|------|-----|-------------|-----|------|------|-----|------|------|------|------|-----|------|------|---|---|--|
| 1  | "0 | 0 | 0 | 0 | 0 | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0           | 0   | 0    | 0    | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0           | 0   | 0    | 0    | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0           | 0   | 0    | 0    | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 0  | 0    | 0    | 0    | 1    | 25   | 13   | )15 | 5254        | 254 | 125  | 157  | '30 | 2    | 0    | 0    | 0    | 0   | 0    | 0    | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 0  | 0    | 0    | 8    | 10   | 3253 | 325  | 325 | 3253        | 253 | 325  | 3253 | 25  | 311- | 42   | 0    | 0    | 0   | 0    | 0    | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 0  | 0    | 11   | 206  | 325: | 3253 | 325  | 325 | 3253        | 253 | 325: | 3253 | 25  | 325  | 3107 | 0    | 0    | 0   | 0    | 0    | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 0  | 0    | 31   | 253  | 325: | 3253 | 325  | 325 | 3253        | 253 | 325  | 3253 | 25  | 325  | 3218 | 510  | 13   | 0   | 0    | 0    | 0 | 0 |  |
| ÷. | "0 | 0 | 0 | 0 | 0 | 0  | 23   | 210  | )253 | 325: | 3253 | 3241 | 316 | 1222        | 223 | 24   | 253  | 25  | 325  | 3253 | 325: | 339  | 0   | 0    | 0    | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 0  | 134  | 3253 | 3253 | 325  | 3225 | 777  | 0   | 0           | 0   | 70   | 218  | 25  | 325  | 3253 | 325  | 321  | 591 | 0    | 0    | 0 | 0 |  |
| ÷. | "0 | 0 | 0 | 0 | 0 | 8  | 214  | 1253 | 3253 | 325: | 3198 | 0    | 0   | 0           | 0   | 0    | 104  | 122 | 125  | 3253 | 325: | 325: | 321 | 529  | 0    | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 11 | 625  | 3253 | 3253 | 324  | 775  | 0    | 0   | 0           | 0   | 0    | 0    | 26  | 20   | 0253 | 325  | 325: | 325 | 3210 | 34   | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 25 | 425: | 3253 | 3253 | 319  | 50   | 0    | 0   | 0           | 0   | 0    | 0    | 0   | 26   | 200  | 25   | 325  | 325 | 3253 | 35   | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 25 | 425  | 3253 | 3253 | 399  | 0    | 0    | 0   | 0           | 0   | 0    | 0    | 0   | 0    | 25   | 23   | 125  | 325 | 3253 | 336  | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 25 | 425: | 3253 | 3253 | 399  | 0    | 0    | 0   | 0           | 0   | 0    | 0    | 0   | 0    | 0    | 223  | 325  | 325 | 3253 | 3129 | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 25 | 425  | 3253 | 3253 | 399  | 0    | 0    | 0   | 0           | 0   | 0    | 0    | 0   | 0    | 0    | 12   | 725  | 325 | 3253 | 3129 | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 25 | 425  | 3253 | 3253 | 399  | 0    | 0    | 0   | 0           | 0   | 0    | 0    | 0   | 0    | 0    | 13   | 925  | 325 | 3251 | 390  | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 25 | 425  | 3253 | 3253 | 399  | 0    | 0    | 0   | 0           | 0   | 0    | 0    | 0   | 0    | 78   | 24   | 325  | 325 | 325  | 35   | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 25 | 425  | 3253 | 3253 | 321  | 534  | 0    | 0   | 0           | 0   | 0    | 0    | 0   | 33   | 152  | 225  | 325  | 325 | 3107 | 11   | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 20 | 625: | 3253 | 3253 | 325  | 3140 | 0    | 0   | 0           | 0   | 0    | 30   | 13  | 923  | 4253 | 325  | 325  | 315 | 42   | 0    | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 16 | 20   | 5253 | 3253 | 325  | 3250 | 201  | 310 | <b>610€</b> | 106 | 320  | 237  | 253 | 325  | 3253 | 325  | 320  | 22  | 0    | 0    | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 0  | 82   | 253  | 3253 | 325  | 3253 | 25   | 325 | 3253        | 253 | 325  | 3253 | 25  | 325  | 3253 | 320  | 922  | 0   | 0    | 0    | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 0  | 1    | 91   | 253  | 325  | 3253 | 3253 | 325 | 3253        | 253 | 325  | 3253 | 25  | 321  | 390  | 7    | 0    | 0   | 0    | 0    | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 0  | 0    | 1    | 18   | 12   | 9208 | 25   | 325 | 3253        | 253 | 315  | 129  | 90  | 4    | 0    | 0    | 0    | 0   | 0    | 0    | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0           | 0   | 0    | 0    | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0           | 0   | 0    | 0    | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0           | 0   | 0    | 0    | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0 | 0 |  |
| 1  | "0 | 0 | 0 | 0 | 0 | 0  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0           | 0   | 0    | 0    | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0 | 0 |  |

| "0 | 0 | ( | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0   | 0   | 0   | 0   | 0    | 0  | 0 | 0 | 0 | 0 | • |
|----|---|---|---|---|---|---|----|-----|-----|------|------|------|------|-----|------|------|-----|-----|-----|-----|------|----|---|---|---|---|---|
| "0 | 0 | ( | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0   | 0   | 0   | 0   | 0    | 0  | 0 | 0 | 0 | 0 | • |
| "0 | 0 | ( | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0   | 0   | 0   | 0   | 0    | 0  | 0 | 0 | 0 | 0 | ٠ |
| "0 | 0 | ( | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0   | 0   |     | 0   | 0    | 0  | 0 | 0 | 0 | 0 | • |
| "0 | 0 | ( | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0   | 0   | 0   | 188 | 3255 | 94 | 0 | 0 | 0 | 0 | • |
| "0 | 0 | ( | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0    |     |     |     |     | 253  |    | 0 | 0 | 0 | 0 | • |
| "0 | 0 | ( | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0   | 123 | 248 | 253 | 167  | 10 | 0 | 0 | 0 | 0 | ٠ |
| "0 | 0 | ( | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 80  | 247 | 253 | 208 | 813  | 0  | 0 | 0 | 0 | 0 | • |
| "0 | 0 | ( | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 29   | 207 | 253 | 235 | 77  | 0    | 0  | 0 | 0 | 0 | 0 | ٠ |
| "0 | 0 | ( | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0   | 54   | 209  | 253 | 253 | 88  | 0   | 0    | 0  | 0 | 0 | 0 | 0 | • |
| "0 | 0 | ( | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 93  | 254  | 1253 | 238 | 170 | 17  | 0   | 0    | 0  | 0 | 0 | 0 | 0 | ٠ |
| "0 | 0 | ( | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0    | 0    | 0    | 23   | 210 | 254  | 253  | 159 | 0   | 0   | 0   | 0    | 0  | 0 | 0 | 0 | 0 | • |
| "0 | 0 | ( | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0    | 0    |      |      |     |      | 1240 |     | 0   | 0   | 0   | 0    | 0  | 0 | 0 | 0 | 0 | • |
| "0 | 0 | ( | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0    | 0    | 27   | 253  | 253 | 3254 | 13   | 0   | 0   | 0   | 0   | 0    | 0  | 0 | 0 | 0 | 0 | • |
| "0 | 0 | ( | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0    | 20   | 206  | 254  | 254 | 1196 | 37   | 0   | 0   | 0   | 0   | 0    | 0  | 0 | 0 | 0 | 0 | • |
| "0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0    | 168  | 3253 | 1253 | 19  | 37   | 0    | 0   | 0   | 0   | 0   | 0    | 0  | 0 | 0 | 0 | 0 | • |
| "0 | 0 | ( | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 20   | 203  |      |      |     | 0    | 0    | 0   | 0   | 0   | 0   | 0    | 0  | 0 | 0 | 0 | 0 | • |
| "0 | 0 | ( | 0 | 0 | 0 | 0 | 0  | 0   |     |      | 3253 |      |      | 0   | 0    |      | 0   |     |     | 0   | 0    | 0  | 0 | 0 | 0 | 0 | • |
| "0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0   | 103 | 253  | 3253 | 191  | 0    | 0   | 0    | 0    | 0   | 0   | 0   | 0   | 0    | 0  | 0 | 0 | 0 | 0 | ٠ |
| "0 | 0 | ( | 0 | 0 | 0 | 0 |    |     |     |      | 3195 |      | 0    | 0   | 0    | 0    | 0   | 0   | 0   | 0   | 0    | 0  | 0 | 0 | 0 | 0 | • |
| "0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 220 | 253 | 1253 | 380  | 0    | 0    | 0   | 0    | 0    | 0   | 0   | 0   | 0   | 0    | 0  | 0 | 0 | 0 | 0 | • |
| "0 | 0 | 0 | 0 | 0 | 0 | 0 | 94 |     |     |      | 394  |      | 0    | 0   | 0    | 0    | 0   | 0   | 0   | 0   | 0    | 0  | 0 | 0 | 0 | 0 | • |
| "0 | 0 | 0 | 0 | 0 |   |   | 89 |     |     |      | 0131 | 0    | 0    | 0   | 0    | 0    | 0   | 0   | 0   | 0   | 0    | 0  | 0 | 0 | 0 | 0 | • |
| "0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 214 | 218 | 95   | 0    | 0    | 0    | 0   | 0    | 0    | 0   | 0   | 0   | 0   | 0    | 0  | 0 | 0 | 0 | 0 | • |
| "0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0   | 0   | 0   | 0   | 0    | 0  | 0 | 0 | 0 | 0 | • |
| "0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0   | 0   | 0   | 0   | 0    | 0  | 0 | 0 | 0 | 0 | • |
| "0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0   | 0   | 0   | 0   | 0    | 0  | 0 | 0 | 0 | 0 | • |
| "0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0   | 0   | 0   | 0   | 0    | 0  | 0 | 0 | 0 | 0 | ٠ |


|  | "0 | 0 | 0 | 0 | 0 | 0  | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0         | 0    | 0    | 0    | 0   | 0 | 0   | 0    | 0 | 0 |   |
|--|----|---|---|---|---|----|----|-----|-----|------|------|------|------|------|------|------|------|-----------|------|------|------|-----|---|-----|------|---|---|---|
|  | "0 | 0 | 0 | 0 | 0 | 0  | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0         | 0    | 0    | 0    | 0   | 0 | 0   | 0    | 0 | 0 |   |
|  | "0 | 0 | 0 | 0 | 0 | 0  | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0         | 0    | 0    | 0    | 0   | 0 | 0   | 0    | 0 | 0 |   |
|  | "0 | 0 | 0 | 0 | 0 | 0  | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0         | 0    | 0    | 0    | 0   | 0 | 0   | 0    | 0 | 0 |   |
|  | "0 | 0 | 0 | 0 | 0 | 0  | 0  | 0   | 0   | 1    | 25   | 130  | )15  | 5254 | 254  | 254  | 157  | 30        | 2    | 0    | 0    | 0   | 0 | 0   | 0    | 0 | 0 |   |
|  | "0 | 0 | 0 | 0 | 0 | 0  | 0  | 0   | 8   | 103  | 3253 | 253  | 325  | 3253 | 253  | 253  | 253  | 253       | 8114 | 12   | 0    | 0   | 0 | 0   | 0    | 0 | 0 |   |
|  | "0 | 0 | 0 | 0 | 0 | 0  | 0  | 11  | 20  | 825: | 3253 | 1253 | 325; | 3253 | 1253 | 1253 | 1253 | 253       | 325  | 3107 | 0    | 0   | 0 | 0   | 0    | 0 | 0 |   |
|  | "0 | 0 | 0 | 0 | 0 | 0  | 0  | 31  | 25  | 325  | 3253 | 253  | 325  | 3253 | 253  | 253  | 253  | 253       | 25   | 3215 | 10   | 13  | 0 | 0   | 0    | 0 | 0 |   |
|  | "0 | 0 | 0 | 0 | 0 | 0  | 23 | 21  | 025 | 325  | 3253 | 1248 | 316  | 1222 | 222  | 246  | 253  | 253       | 25   | 3253 | 1253 | 339 | 0 | 0   | 0    | 0 | 0 |   |
|  | "0 | 0 | 0 | 0 | 0 | 0  |    |     |     | 325  |      |      | 0    | 0    | 0    | 70   |      |           |      | 3253 |      |     |   | 0   | 0    | 0 | 0 |   |
|  | "0 | 0 | 0 | 0 |   | 5  |    |     |     | 325  |      |      | 0    | 0    | 0    | 0    | 104  | 224       |      | 3253 |      |     |   |     | 0    | 0 | 0 |   |
|  | "0 | 0 | 0 | 0 |   |    |    |     |     | 324  |      | 0    | 0    | 0    | 0    | 0    | 0    | <b>26</b> | 20   | 253  |      |     |   |     |      | 0 | 0 |   |
|  | "0 | 0 | 0 | 0 |   |    |    |     |     | 319  |      | 0    | 0    | 0    | 0    | 0    | 0    | 0         | 26   |      |      |     |   | 325 |      | 0 | 0 |   |
|  | "0 | 0 | 0 | 0 |   |    |    |     |     | 399  |      | 0    | 0    | ~    | 0    | 0    |      | 0         | 0    |      |      |     |   |     | 336  |   | 0 |   |
|  | "0 | 0 | 0 | 0 |   |    |    | 325 |     |      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0         | 0    | 0    |      |     |   |     | 3125 |   | 0 |   |
|  | "0 | 0 | 0 | 0 |   |    |    | 325 |     |      | 0    | 0    | 0    |      | 0    | 0    | 0    | 0         | 0    | 0    |      |     |   |     | 3125 |   | 0 |   |
|  | "0 | 0 | 0 | 0 |   |    |    | 325 |     |      | 0    | 0    | 0    | ~    | 0    |      |      | 0         | 0    | 0    |      |     |   |     | 390  |   | 0 |   |
|  | "0 | 0 | 0 | 0 |   |    |    |     |     |      | 0    | 0    | 0    |      | 0    | 0    | 0    | 0         | 0    |      |      |     |   | 325 |      | 0 | 0 |   |
|  | "0 | 0 | 0 | 0 |   |    |    |     |     | 321  |      |      | 0    |      | 0    | 0    | 0    | 0         | 33   |      |      |     |   | 310 |      | 0 | 0 |   |
|  | "0 | 0 | 0 | 0 |   |    |    |     |     | 325  |      |      | 0    |      | 0    |      |      |           |      | 1253 |      |     |   |     | 0    | 0 | 0 |   |
|  | "0 | 0 | 0 | 0 |   | 16 |    |     |     |      |      |      |      | 6106 |      |      |      |           |      |      |      |     |   | 0   | 0    | 0 | 0 |   |
|  | "0 | 0 | 0 | 0 |   | 0  | 82 |     |     |      |      |      |      | 3253 |      |      |      |           |      |      | 1201 | 922 | 0 | 0   | 0    | 0 | 0 | 2 |
|  | "0 | 0 | 0 | 0 |   | 0  | 1  | 91  |     |      |      |      |      | 3253 |      |      |      |           |      |      | 7    | 0   | 0 | 0   | 0    | 0 | 0 |   |
|  | "0 | 0 | 0 | 0 | 0 | 0  | 0  | 1   | 18  | 12   |      |      | 325: | 3253 |      |      |      |           | 4    | 0    | 0    | 0   | 0 | 0   | 0    | 0 | 0 |   |
|  | "0 | 0 | 0 | 0 | 0 | 0  | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | ÷.   | 0         | 0    | 0    | 0    | 0   | 0 | 0   | 0    | 0 | 0 |   |
|  | "0 | 0 | 0 | 0 | 0 | 0  | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0         | 0    | 0    | 0    | 0   | 0 | 0   | 0    | 0 | 0 | 1 |
|  | 0  | 0 | 0 | 0 | 0 | 0  | 0  | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0         | 0    | 0    | 0    | 0   | 0 | 0   | 0    | 0 | 0 |   |
|  |    |   |   |   |   |    |    |     |     |      |      |      |      |      |      |      |      |           |      |      |      |     |   |     |      |   |   |   |

| 1   | "0 | 0 | 0  | 0 | 0 | 0  | 0    | 0   | 0    | 0   | 0    | 0   | 0   | 0    | 0   | 0    | 0   | 0   | 0   | 0    | 0   | 0    | 0   | 0   | 0    | 0  | 0 |  |
|-----|----|---|----|---|---|----|------|-----|------|-----|------|-----|-----|------|-----|------|-----|-----|-----|------|-----|------|-----|-----|------|----|---|--|
| 1   | "0 | 0 | 0  | 0 | 0 | 0  | 0    | 0   | 0    | 0   | 0    | 0   | 0   | 0    | 0   | 0    | 0   | 0   | 0   | 0    | 0   | 0    | 0   | 0   | 0    | 0  | 0 |  |
| 1   | "0 | 0 | 0  | 0 | 0 | 0  | 0    | 0   | 0    | 0   | 0    | 0   | 0   | 0    | 0   | 0    | 0   | 0   | 0   | 0    | 0   | 0    | 0   | 0   | 0    | 0  | 0 |  |
| 1   | "0 | 0 | 0  | 0 | 0 | 0  | 0    | 0   | 0    | 0   | 0    | 0   | 0   | 0    | 0   | 0    | 0   | 0   | 0   | 0    | 0   | 0    | 0   | 0   | 0    | 0  | 0 |  |
| - i | "0 | 0 | 0  | 0 | 0 | 0  | 0    | 0   | 0    | 1   | 25   | 13  | 015 | 5254 | 254 | 1254 | 157 | 30  | 2   | 0    | 0   | 0    | 0   | 0   | 0    | 0  | 0 |  |
| 1   | "0 | 0 | 0  | 0 | 0 | 0  | 0    | 0   | 8    | 10  | 3253 | 325 | 325 | 3253 | 253 | 3253 | 253 | 253 | 811 | 42   | 0   | 0    | 0   | 0   | 0    | 0  | 0 |  |
| i   | "0 | 0 | 0  | 0 | 0 | 0  | 0    | 11  | 208  | 25  | 3253 | 325 | 325 | 3253 | 25  | 3253 | 253 | 253 | 325 | 3107 | 0   | 0    | 0   | 0   | 0    | 0  | 0 |  |
| -i  | "0 | 0 | 0  | 0 | 0 | 0  | 0    | 31  | 253  | 325 | 3253 | 325 | 325 | 3253 | 25  | 3253 | 253 | 253 | 25  | 3215 | 10  | 13   | 0   | 0   | 0    | 0  | 0 |  |
| i   | "0 | 0 | 0  | 0 | 0 | 0  | 23   | 21  | 0253 | 325 | 325  | 324 | 816 |      |     | 2246 | 253 | 253 | 25  | 3253 | 25  | 339  | 0   | 0   | 0    | 0  | 0 |  |
| 1   | "0 | 0 | 0  | 0 | 0 | 0  | 134  | 325 | 3253 | 325 | 3221 | 977 | 0   | 0    | 0   | 70   | 218 | 253 | 125 | 3253 | 25  | 3215 | 591 | 0   | 0    | 0  | 0 |  |
| i   | "0 | 0 | 0  | 0 | 0 | 5  | 214  | 125 | 3253 | 25  | 3195 | 50  | 0   | 0    | 0   | 0    | 104 | 224 | 25  | 3255 | 25  | 3253 | 321 | 529 | 0    | 0  | 0 |  |
| i   | "0 | 0 | 0  | 0 | 0 | 11 | 6253 | 325 | 3253 | 324 | 775  | 0   | 0   | 0    | ō   | 0    | 0   | 26  | 20  | 0253 | 25  | 3253 | 325 | 321 | 64   | 0  | 0 |  |
| i   | "0 | 0 | 0  | 0 | 0 | 25 | 425  | 325 | 3253 | 19  | 50   | 0   | 0   | 0    | 0   | 0    | 0   | 0   | 26  | 200  | 25  | 3253 | 325 | 325 | 35   | 0  | 0 |  |
| i   | "0 | 0 | 0  | 0 | 0 | 25 | 4253 | 325 | 3253 | 199 | 0    | 0   | 0   | 0    | ō   | 0    | 0   | 0   | 0   | 25   | 23  | 1253 | 325 | 325 | 336  | 0  | 0 |  |
| i   | "0 | 0 | 0  | 0 | 0 | 25 | 4253 | 125 | 3252 | 199 | 0    | 0   | 0   | 0    | 0   | 0    | 0   | 0   | 0   | 0    | 22  | 3253 | 125 | 325 | 3125 | 0  | 0 |  |
| i   | "0 | 0 | 0  | 0 | 0 | 25 | 425  | 325 | 3253 | 199 | 0    | 0   | 0   | 0    | ō   | 0    | 0   | 0   | ō   | 0    | 12  | 7253 | 325 | 325 | 3125 | 0  | 0 |  |
| i   | "0 | ō | ō  | 0 | 0 | 25 | 4253 | 125 | 3252 | 199 | 0    | 0   | 0   | 0    | ō   | 0    | 0   | 0   | 0   | 0    | 1.3 | 0253 | 25  | 325 | 390  | 0  | 0 |  |
| i   | "0 | ŏ | ō  | õ | ŏ |    | 425  |     |      |     | ŏ    | ō   | õ   | õ    | ŏ   | ō    | õ   | õ   | ŏ   | 78   | 24  | 8253 | 325 | 325 | 35   | õ  | ŏ |  |
| i   | "0 | 0 | 0  | 0 | 0 | 25 | 4253 | 125 | 3252 | 121 | 634  | 0   | 0   | 0    | ō   | 0    | 0   | 0   | 33  | 153  | 25  | 3253 | 25  | 310 | 71   | 0  | 0 |  |
| i   | "0 | õ | 0  | õ | õ | 20 | 625  | 325 | 3253 | 25  | 3140 | 00  | ō   | õ    | õ   | 0    | 30  | 139 | 23  | 4255 | 25  | 3253 | 15  | 42  | 0    | 0  | õ |  |
| i   | "0 | ō | 0  | 0 | 0 | 16 | 205  | 125 | 3252 | 25  | 3254 | 020 | 810 | 6106 | 10  | 1200 | 237 | 255 | 25  | 3253 | 25  | 3200 | 222 | 0   | ō.   | 0  | 0 |  |
| i   | "0 | ŏ | ŏ  | õ | ŏ | õ  | 82   |     |      |     |      |     |     | 3253 |     |      |     |     |     |      |     |      | 0   | ŏ   | ŏ    | ŏ  | ŏ |  |
| i   | "0 | ō | 0  | 0 | 0 | 0  | 1    | 91  | 252  | 25  | 325. | 325 | 325 | 3253 | 25  | 1253 | 253 | 255 | 21  | 390  | 7   | 0    | 0   | 0   | 0    | 0  | 0 |  |
| 1   | "0 | ő | ŏ. | ő | ő | ŏ. | õ.   | 1   | 18   |     |      |     |     | 3253 |     |      |     |     | 4   | 0    | ò.  | ő    | ŏ.  | ő   | õ.   | õ. | ŏ |  |
| 1   | "0 | ő | ŏ  | õ | 0 | õ  | ŏ    | ô.  | 0    | 0   | 0    | 0   | 0   |      | 0   | 0    | 0   | 0   | 0   | ŏ    | õ   | 0    | 0   | ő   | ŏ    | õ  | 0 |  |
| 1   | "0 | ő | ŏ  | 0 | 0 | ő  | ŏ    | ő   | ő    | ő   | 0    |     | 0   | ő    | õ   | ň    | ő   | ŏ   | ő   | ő    | õ.  | ő    | ő   | ő   | ŏ    | õ  | ŏ |  |
| 1   | "0 | ő | ŏ  | ő | 0 | ŏ  | ŏ    | ŏ   | 0    | 0   | ŏ    | ŏ   | ő   | 0    | ŏ   | ŏ    | õ   | 0   | õ   | õ    | ŏ   | õ    | 0   | ő   | ŏ    | ŏ  | õ |  |
|     |    | ~ | ~  |   |   | ~  |      | -   | ~    | ~   | ×.   | -   | ~   | ~    | 2   | š.,  | ~   | ~   | 1   | ~    | 2   | ~    | ~   | ~   |      | ×. |   |  |

| px0 | px1 | px2 | <br>pxn | Label |
|-----|-----|-----|---------|-------|
| 0   | 0   | 0   | <br>35  | 1     |
| 0   | 0   | 0   | <br>255 | 3     |
| 0   | 0   | 0   | <br>0   | 5     |
| 0   | 5   | 0   | <br>4   | 5     |
| 0   | 3   | 0   | <br>100 | 9     |
| 0   | 7   | 0   | <br>10  | 0     |
| 0   | 0   | 0   | <br>0   | 7     |
| 0   | 0   | 0   | <br>0   | 7     |
| 0   | 10  | 0   | <br>0   | 1     |
| 0   | 0   | 0   | <br>0   | 5     |
|     |     |     | <br>    |       |

• A 28  $\times$  28 image would be represented as a 748 row vector in the dataset

### Image Representation for ML





# Image Representation for ML



### Image Representation for ML



$$X = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & \vdots & \dots & x_{mn} \end{bmatrix}, Y = \begin{bmatrix} y_1 \\ \vdots \\ \vdots \\ y_m \end{bmatrix}$$

Each image is represented in a row vector and we want to learn a function h(x) that maps an image  $\mathbf{x}_i \in A$  to a class  $\mathbf{y}_j \in Y$ e.g. patient has pneumonia

Plan

#### Background Computer Vision Image Representatior

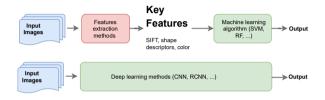
#### **2** Breakthrough in CV

- 3 Common CV Tasks Basic Tasks Advanced Tasks
- Real World Projects Engineering Diagrams Online User's Authentication Remote Inspection Mechanical Engineering Diagrams
- **5** Challenges
- 6 Conclusion

# Before Deep Learning

Good Old-Fashioned Artificial Intelligence (GOFAI)<sup>1</sup>

 Hand-craft features (color, shapes, etc...) and heuristics (edge, line detectors, filters, etc...)



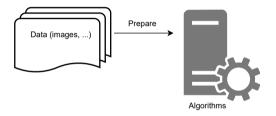

• Feed into ML algorithms

<sup>&</sup>lt;sup>1</sup>Haugeland, John. Artificial intelligence: the very idea. Cambridge, Mass: MIT Press, 1985.

# Deep Learning

• *End-to-End* DL Model that can learn the features and perform the required tasks




#### Paper

Gumbs, A.A.; Frigerio, I.; Spolverato, G.; Croner, R.; Illanes, A.; Chouillard, E.; Elyan, E. Artificial Intelligence Surgery: How Do We Get to Autonomous Actions in Surgery? Sensors 2021, 21, 5526. https://doi.org/10.3390/s21165526

# Data & Algorithms

Automating complex CV tasks and outperforming humans using DL requires:

- Lots of GOOD quality data (millions of images in some cases)
- Algorithms
- Computing power

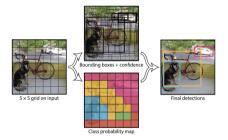


# **Computing Power**

- The cloud
- Super Computers (GPUs)



DGX 1: 1.3 Billion image per day


# Computing Power & Data

- Computing power (not available)
- Only few 100's of images (or even less)

<sup>&</sup>lt;sup>2</sup>Darknet code / tutorials https://pjreddie.com/darknet/

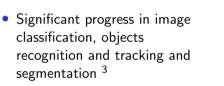
# Computing Power & Data

- Computing power (not available)
- Only few 100's of images (or even less)
- With transfer learning you can solve very complex problems (e.g. object detection and tracking using YOLO's darknet implementation<sup>2</sup>



<sup>&</sup>lt;sup>2</sup>Darknet code / tutorials https://pjreddie.com/darknet/

Significant Progress


# Medical Image Analysis

 Significant progress in image classification, objects recognition and tracking and segmentation <sup>3</sup>

<sup>&</sup>lt;sup>3</sup>Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen A.W.M. van der Laak, Bram van Ginneken, Clara I. Sánchez, A survey on deep learning in medical image analysis, Medical Image Analysis, Volume 42,2017, Pages 60-88, ISSN 1361-8415

# Medical Image Analysis

 Google AI Just Beat Human at Detecting Cancer (89% vs 73% humans accuracy)



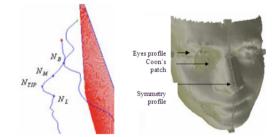


[Source: https://www.fool.com/investing/2017/04/04/google-ai-just-beat-human-pathologists-at-detectin.aspx]

<sup>3</sup>Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen A.W.M. van der Laak, Bram van Ginneken, Clara I. Sánchez, A survey on deep learning in medical image analysis, Medical Image Analysis, Volume 42,2017, Pages 60-88, ISSN 1361-8415

# Biometrics (Face Recognition)

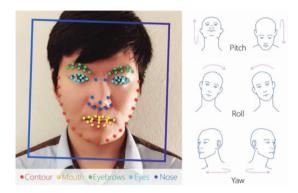
• DeepFace<sup>4</sup>, a face recognition system was first proposed by FaceBook in 2014 achieved an accuracy of 97.35%, beating the state-of-the-art then, by 27%.


 Check code and other interesting CV repositories at https://github.com/mltooling/best-of-ml-python

<sup>&</sup>lt;sup>4</sup>Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, "Deepface: Closing the gap to human-level performance in face verification," in 2014 IEEE Conference on Computer Vision and Pattern Recognition, June 2014, pp. 1701–1708

# Biometrics (Face Recognition)

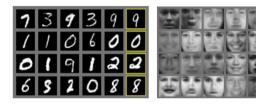
• DeepFace<sup>4</sup>, a face recognition system was first proposed by FaceBook in 2014 achieved an accuracy of 97.35%, beating the state-of-the-art then, by 27%.


 Check code and other interesting CV repositories at https://github.com/mltooling/best-of-ml-python



<sup>&</sup>lt;sup>4</sup>Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, "Deepface: Closing the gap to human-level performance in face verification," in 2014 IEEE Conference on Computer Vision and Pattern Recognition, June 2014, pp. 1701–1708

# Face Analysis and Sexual Orientation


 Using less than 40,000 images, DL outperformed humans in detecting people's sexual orientation from single images<sup>5</sup>



<sup>&</sup>lt;sup>5</sup>Wang, Y., & Kosinski, M. (2018). Deep neural networks are more accurate than humans at detecting sexual orientation from facial images. Journal of Personality and Social Psychology, 114(2), 246–257. https://doi.org/10.1037/pspa0000098

# Generative Adverserial Neural Network (GAN)

• GANs were developed in 2014 by Ian J Goodfelow



#### Paper

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative adversarial nets

#### $\mathsf{GANs}$

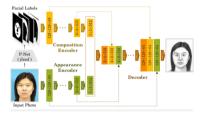


- GANs have been successfully applied to various applications
- For example face image generation (very convincing)

### GANs



- GANs have been successfully applied to various applications
- For example face image generation (very convincing)


#### GANs

- GANs are widely used for generating super-resolution images, image editing and colourisation
- Check *DeOldify*, a powerful GAN-based tool for editing/ coloring images (code is available on github)



#### GANs

- Wide range of other applications such as generating sketches from images
- Check the GANs Zoo for the list of applications and corresponding source code repository<sup>6</sup> or GANs Awesome Applications<sup>7</sup>



[Yu et al. https://arxiv.org/pdf/1712.00899.pdfTowards Realistic Face Photo-Sketch Synthesis via Composition-Aided GANs]

<sup>&</sup>lt;sup>6</sup>https://github.com/hindupuravinash/the-gan-zoo <sup>7</sup>https://github.com/nashory/gans-awesome-applications

### Latest Trending Applications



- Computer vision in health and safety (e.g. identify potential hazards in construction sites),
- Retail industry<sup>9</sup>

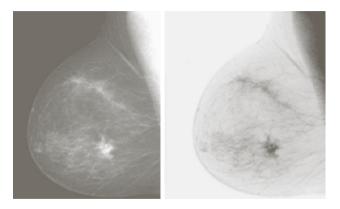
 Unexpected obstacles detection<sup>8</sup>

<sup>8</sup>S. Ramos, S. Gehrig, P. Pinggera, U. Franke and C. Rother, "Detecting unexpected obstacles for self-driving cars: Fusing deep learning and geometric modeling," 2017 IEEE Intelligent Vehicles Symposium (IV), 2017, pp. 1025-1032, doi: 10.1109/IVS.2017.7995849.

<sup>9</sup>https://www.forbes.com/

Plan

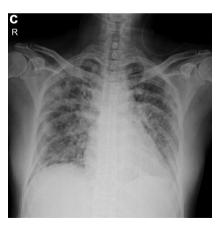
#### Background Computer Vision Image Representatio


#### 2 Breakthrough in CV

- Common CV Tasks Basic Tasks Advanced Tasks
- Real World Projects Engineering Diagrams Online User's Authentication Remote Inspection Mechanical Engineering Diagrams
- **5** Challenges
- 6 Conclusion

#### **Basic Tasks**

#### Basic CV Methods


 Methods include thresholding, contrast stretching, morphological operations, negation of images, .....



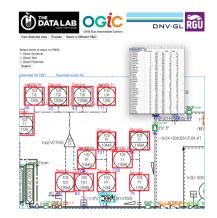
[source: Gonzalez and Woods]

More Complex Tasks

#### Classification



#### Covid-19 positive

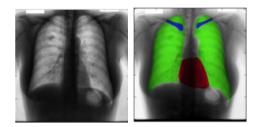

#### Covid-19 negative



[Source: https://github.com/ieee8023/covid-chestxray-dataset]

### Object Detection/ Recognition






#### Paper

E Elyan, L Jamieson, A Ali-Gombe, Deep learning for symbols detection and classification in engineering drawings, Neural Networks, Volume 129, 2020, Pages 91-102, ISSN 0893-6080, https://doi.org/10.1016/j.neunet.2020.05.025

#### Segmentation

 Widely used across various applications such as self-driving cars, and very common in biomedical applications



#### Paper

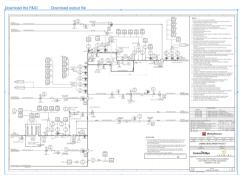
A. A. Novikov, D. Lenis, D. Major, J. Hladůvka, M. Wimmer and K. Bühler, "Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs," in IEEE Transactions on Medical Imaging, vol. 37, no. 8, pp. 1865-1876, Aug. 2018, doi: 10.1109/TMI.2018.2806086.

Plan

#### Background Computer Vision Image Representation

#### 2 Breakthrough in CV

- Common CV Tasks Basic Tasks Advanced Tasks
- Real World Projects


   Engineering Diagrams
   Online User's Authentication
   Remote Inspection
   Mechanical Engineering Diagrams
- **6** Challenges
- 6 Conclusion

### **Engineering Diagrams**



View Selected Area Process Select a Different P&D

Select items to show on P&ID: Show Symbols Show Text Show Pipelines Submit

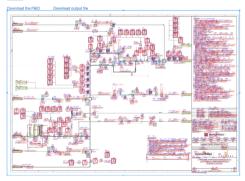


• Classify and localise the area of interest

### **Engineering Diagrams**



Select items to show on P&ID:


Show Symbols Show Text Show Pipelines Submit

• Classify and localise the area of interest

### **Engineering Diagrams**



Select items to show on P&ID: Show Symbols Show Text Show Pipelines Submit



• Classify and localise the area of interest

### On-line User's Authentication

#### Research

- Deep Convolutional Neural Networks
- Object Detection
- Ensemble Learning

#### Application

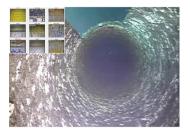
- Remote user's authentication
- Value  $\approx \pounds 180K$

• Aug-2019 to Jul-2021

| Paue Predezi<br>Paue Predezi<br>Bater<br>Kasarare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | A Designed to the second secon |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Data         Association           Virging (1) Them associated that the and the CPURPERT and a set of a CPURPERT (1) the CPURPER (1) the CPURPERT (1) the CPURPERT (1) th                           | Step 1                                              | Provide N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Imagene         Virangel' (VLI)Host desting val Statis Adds Adds and StatisTUPERT and a part gpg". Viranes' (L.B. (Vansert 1)): Viranes' (VLI) and Add Val Statist (Viranes'): Viranes' (VLI) and Add Val Vansert'); Prot Viranes' (VIII): Viranes' (VIII): Viranes' (VIII): Viranes''); Prot VIII): Viranes''(VIII): Viranes''(VIII): Viranes''); Prot VIII): Viranes''(VIII): Viranes''); Prot VIII): Viranes''(VIII): Viranes''(VIII): Viranes''); Prot VIII): Viranes''); Prot VIII): Viranes''(VIII): Viranes''); Prot VIII): Viranes''(VIII): Viranes''); Prot VIII): Viranes''); Prot VIII): Viranes'', Prot VIII): Viranes''; Prot VIII): Viranes'; Prot VIII): Viranes; Prot VIII]: Viranes; Prot VIII] |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Result Simestamp: 2020-07-13 11-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Vequestidy': V72e71e04<br>(Vequestidy': V2equilier | 4634 4/140 8008 6780640cH2277, VdocumentFac<br>laceBox(*) (\$17, 264, 136, 307)), VdocumentFac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | 2020-07-03 11.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |

Partners- In collaboration with Mintra Group - Aberdeen, UK

#### **Remote Inspection**


#### Research

 Ultrasonic image analysis using Deep Learning-based methods

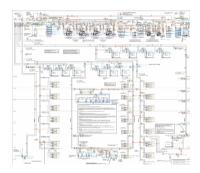
#### Application

- Remote inspection and structural integrity of offshore assets
- KTP with AISUS
- Value  ${pprox} {\pounds} 175K$

• Start date June-2021



Partners- In collaboration with AISUS LTD - Aberdeen, UK


### Mechanical Engineering Diagram Analysis

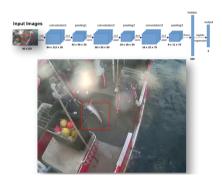
#### Application

#### Research

- Image analysis
- Deep Learning
- Ensemble Learning

- Automatic interpretation of mechanical engineering drawings
- Value  $\approx \pounds 300 K$
- Start date Jan-2021




Partners- In collaboration with Fieri Analytics - Canada

Plan

# Background Computer Vision Image Representation

- Ø Breakthrough in CV
- Common CV Tasks Basic Tasks Advanced Tasks
- Real World Projects Engineering Diagrams Online User's Authentication Remote Inspection Mechanical Engineering Diagrams
- **5** Challenges
- 6 Conclusior

#### Data Annotation





• Better quality and more annotation leads to better results <sup>10</sup>

<sup>&</sup>lt;sup>10</sup>Adamu Ali-Gombe, Eyad Elyan, Chrisina Jayne, "Fish Classification in Context of Noisy Images". International Conference of Engineering Applications of Neural Networks (EANN) 2017: 216-226,DOI: https://doi.org/10.1007/978-3-319-65172-9\_19

### Data Availability/ Annotation

- 11
- Availability of good, and accurately annotated datasets of images and videos

<sup>&</sup>lt;sup>11</sup>Source: E. Schwab, A. Gooßen, H. Deshpande and A. Saalbach, "Localization of Critical Findings in Chest X-Ray Without Local Annotations Using Multi-Instance Learning," 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), 2020, pp. 1879-1882, doi: 10.1109/ISBI45749.2020.9098551.

### Data Generation/ Annotation?



 Generate data using GAN-based models <sup>12</sup>

<sup>&</sup>lt;sup>12</sup>Adamu Ali-Gombe, Eyad Elyan, MFC-GAN: Class-imbalanced dataset classification using Multiple Fake Class Generative Adversarial Network, Neurocomputing, Volume 361, 2019, Pages 212-221, ISSN 0925-2312,https://doi.org/10.1016/j.neucom.2019.06.043.

#### Data Annotation Tools

Data Annotation is largely manual process using some open source tools:

- 1 VGG Image Annotator
- 2 LabelImg

7 . . .

- OpenLabeler
- Make Sense https://www.makesense.ai/
- ImgLab https://imglab.in/
- 6 Sloth https://github.com/cvhciKIT/sloth



#### **Biased Data**



Bombay 136.ipg

hours 139 inn











Bombay 178.ipg

Bombay 191.jpg



Bombay 129.ipg

Bombay 150 ipp



Bombay 156.ipg





British\_Shorthair,101.jpg British\_Shorthair,114.jpg British\_Shorthair,116.jpg British\_Shorthair,118.jpg









Bombay 164.ipg







tish Shorthair 155.jog British Shorthair 163.jog British Shorthair 177.jog British Shorthair 180.jog British Shorthair 183.jog British Shorthair 184.jog British Shorthair 205.jo oblibuatura 111 log



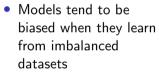
chibuahua.181.ipg





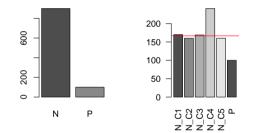






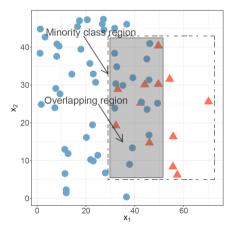






Egyptian Mey 109.jpg Egyptian Mey 118.jpg Egyptian Mey 117.jpg Egyptian Mey 140.jpg Egyptian Mey 141.jpg Egyptian Mey 142.jpg Egyptian Mey 149.jpg

[Source: http://www-edlab.cs.umass.edu/ smaji/cmpsci670/fa14/hw/recognition/] Kaggle competition https://www.kaggle.com/c/dogs-vs-cats




#### Imbalanced Datasets

- Find within-class similarity in the dominant class and
- oversample minority-class instances
- Classify and compare<sup>13</sup>



<sup>&</sup>lt;sup>13</sup>Elyan, E., Moreno-Garcia, C.F. & Jayne, C. CDSMOTE: class decomposition and synthetic minority class oversampling technique for imbalanced-data classification. Neural Comput & Applic 33, 2839–2851 (2021). https://doi.org/10.1007/s00521-020-05130-z

#### Imbalanced Datasets







### Neighbourhood-based undersampling approach for handling imbalanced and overlapped data



Pattaramon Vuttipittayamongkol\*, Eyad Elyan

School of Computing Sciences and Digital Media, Robert Gordon University, UK

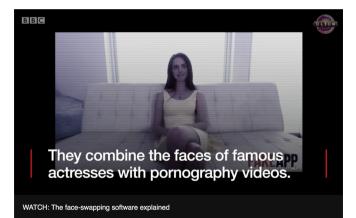
#### ARTICLE INFO

#### ABSTRACT

Article history: Received 9 February 2019 Revised 31 July 2019 Accepted 26 August 2019 Available online 3 September 2019

Keywords: Imbalanced dataset Undersampling k-NN Class overlap Classification Class imbalanced datasets are common across different domains including health, security, banking and others. A typical supervised learning algorithm reds to be biased towards the majority class when dealing with imbalanced datasets. The learning task becomes more challenging when there is also an overlap of instances from different classes. In by paper, we propose an unietra moling index works for handling class imbalance in by identify and elimination of these instances from the overlapping region. Accurate identification and elimination of these instances from the overlapping region. Accurate identification and elimination of these instances from the overlapping region. Accurate identification and elimination of these instances from the overlapping region. Accurate idenformation loss. Tour methods based on neighbourhood searching with different criteria to identify potential overlapped instances are proposed in this paper. Extensive experiments for the orthogen of the orthogen of the overlapping region. Accurate idenformation with state-of-the-strat methods across different common metrics with stateoft state strate interminimises in sensitivity.

© 2019 Elsevier Inc. All rights reserved.


#### **AI** Performance

- Humans were outperformed by algorithms in many CV tasks
- On a lower quality images, humans and algorithms performance is similar <sup>14</sup>

<sup>&</sup>lt;sup>14</sup>S. Dodge and L. Karam, "A Study and Comparison of Human and Deep Learning Recognition Performance under Visual Distortions," 2017 26th International Conference on Computer Communication and Networks (ICCCN), 2017, pp. 1-7, doi: 10.1109/ICCCN.2017.8038465.

### Data Authenticity

 "Deepfake videos could 'spark' violent social unrest"<sup>15</sup>



<sup>&</sup>lt;sup>15</sup>source https://www.bbc.co.uk/news/technology-48621452

### Data Authenticity

- It is now possible not only to produce convincing forged video but also to fully synthesize video content
- So many ways to edit/ forge a video or image
- No training data available!

#### Dig VIER journal homep

## Digital Investigation 29 (2019) 67–81 Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

# T

Digital

### A review of digital video tampering: From simple editing to full synthesis

ABSTRACT



#### Pamela Johnston<sup>®</sup>, Eyad Elyan

Robert Gordon University, Garthdee House, Garthdee Road, Aberdeen, AB10 7QB, Scotland, UK

#### ARTICLE INFO

#### Article history: Received 16 November 2018 Received in revised form 24 January 2019 Accepted 17 March 2019 Available online 22 March 2019

Keywords: Video tampering Video synthesis Deep learning Video forgery

#### Video tampering methods have witnessed considerable progress in recent years. This is partly due to the rapid development of advanced deep learning methods, and also due to the large volume of video footage that is now in the public domain. Historically, convincing video tampering has been too labour intensive to achieve on a large scale. However, recent developments in deep learning-based methods have made it possible not only to produce convincing forged video but also to fully synthesize video content. Such advancements provide new means to improve visual content itself, but at the same time they raise new challenges for state-of-the-art tampering detection methods. Video tampering detection has been an active field of research for some time, with periodic reviews of the subject. However, little attention has been paid to video tampering techniques themselves. This paper provides an objective and in-depth examination of current techniques related to digital video manipulation. We thoroughly examine their development, and show how current evaluation techniques provide opportunities for the advancement of video tampering detection. A critical and extensive review of photo-realistic video synthesis is provided with emphasis on deep learning-based methods. Existing tampered video datasets are also gualitatively reviewed and critically discussed. Finally, conclusions are drawn upon an exhaustive and thorough review of tampering methods with discussions of future research directions aimed at improving detection methods.

© 2019 Elsevier Ltd. All rights reserved

#### Data Authenticity

#### • Face presentation attacks





## Contents lists available at ScienceDirect Information Fusion iournal homepage: www.elsevier.com/ocate/influs

NAMES OF THE OWNER

A review of state-of-the-art in Face Presentation Attack Detection: From early development to advanced deep learning and multi-modal fusion methods Faseela Abdullakuty<sup>7</sup>, Eyad Elyan, Pamela Johnston and of Groups, Barkon Gene Unsexp. Referso Long Elyan

#### ARTICLE INFO

#### ABSTRACT

Keywords: Face Recognition Presentation attacks Deep learning Generalisation Face Recognition is considered one of the most common biometric solutions these days and is widely used across a range of devices for various security purposes. The performance of FR systems has improved by orders of magnitude over the nast decade. This is mainly due to the latest developments in commuter vision and deep convolutional neural networks, and the availability of large training datasets. At the same time, these systems have been subject to various types of attacks. Presentation attacks are common, simple, and easy to implement. These simply involve presenting a video, photo, or mask to the camera or digital sensor and have proven capable of fooling FR systems and providing access to unauthorised users. Presentation attack detection is increasingly attracting more attention in the research community. A wide range of methods has already been developed to address this challenge. Deep learning-based methods in particular have shown very promising results. However, existing literature suggests that even with state-of-the-art methods, performance drops significantly in cross-dataset evaluation. We present a thorough, comprehensive, and technical review of existing literature on this timely and challenging problem. We first introduce and discuss the presentation attack problem and cover related and prent work in this area. In-depth bechnical details of existing presentation attack detection methods are then presented and critically discussed and evaluated followed by a comprehensive discussion and evaluation of existing public datasets and commonly used evaluation metrics. Our review shows clearly that desnite the recent and significant advances in this area of research, detecting unseen attacks is still considered a key problem. Machine learning methods tend to perform wall, but only when test data comes from the same distribution as the training data (i.e. same dataset). New research directions are discussed in detail, including ways to improve the generalisation of machine learning methods, and move towards creating more stable presentation attack detection techniques that generalise across a wide range of unseen samples.

Plan

# Background Computer Vision Image Representation

- 2 Breakthrough in CV
- Common CV Tasks Basic Tasks Advanced Tasks
- Real World Projects Engineering Diagrams Online User's Authentication Remote Inspection Mechanical Engineering Diagrams
- **6** Challenges



#### Conclusion and Way Forward

• Understanding your data, and finding and articulating a problem is the most important and crucial step for building intelligent machine vision solution

#### Conclusion and Way Forward

- Understanding your data, and finding and articulating a problem is the most important and crucial step for building intelligent machine vision solution
- The key challenging problem -I thinkis to understand the context



# **Thank You**

**@ElyanEyad** 

https://www3.rgu.ac.uk/dmstaff/elyan-eyad

https://github.com/heyad/Teaching/tree/master/Python